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TOWARDS A NEW MODEL-FREE SIMULATION OF HIGH- 
REYNOLDS-FLOWS: LOCAL AVERAGE DIRECT NUMERICAL 

SIMULATION 

F. M. DENARO* 
Department of Energetic nemofluidynamics md  Envimnmentol Control, University of Naples, ‘Federico II’, Naples, Itoh 

SUMMARY 
Studies on the numerical simulation of high-Reynolds-numbex flows encounter difficulties due to the wide range 
of characteristic length and time scales existing in the flow field. These are often much smaller than the 
computational grid size. A new approach based on a ‘model-free’ local average direct numerical simulation is 
presented which incorporates a strategy to filter the non-resolvable scales by means of an integration over the 
domain and to recover the contribution of the subgrid scales by using an integral formulation developed for them. 
The resulting weak formulation allows us to define a numerical flux that, thanks to the filtering operation, is highly 
accurate. Several computation test-cases concerning theoretical accuracy and the Navier-Stokes equations at high 
Reynolds number are carried out without using any turbulence model. The obtained accuracy for all computations 
confirms that this approach can be considered a valid contribution in the field of direct numerical simulation. 

KEY WORDS model-free simulation; direct numerical simulation; large eddy simulation; multidimensional high-ordex fluxes 

1. INTRODUCTION 

One of the most exciting challenges of modem research in the computational fluid dynamics (CFD) 
field concerns the numerical Simulation of transport equations at high Reynolds (or Peclet) number. It 
is well known that, for the still simple problem of the 1D solution of the linear wave equation, 
numerical simulations can be obtained by replacing the partial differential equation by a wide class of 
approximate numerical operators (see e.g. Reference 1). Consequently, in the resulting modified 
equations some terms appear which, from a mathematical point of view, vanish only if the integration 
steps go to zero (consistence property) or when the Courant number can be held at an adequate 
constant value over the whole domain. These terms are responsible for loss of accuracy when the flows 
(as in practical cases) have such a low physical diffusion that the numerical one totally changes their 
true character. This is a considerable problem in the case of Navier-Stokes equation solutions at high 
Reynolds number, because the characteristics of laminar, transitional and turbulent flows coexist and 
can be strongly biased by the real (physical plus numerical) diffusion. One of the most attractive 
approaches since Orszag’s simulations in 1969 is the direct numerical simulation (DNS) of the 
transport equations owing to its ‘potential capability’. DNS ideally describes the true behaviour of all 
the flow field scales, but to succeed with this approach, one must consider the variations in length 
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scales, ranging from the characteristic length of the computational domain up to the smallest eddy size 
where the mechanisms of energy dissipation occur. As a consequence, it is well known that at high 
Reynolds number the problems caused by the large number of required grid points overcome the 
existing computer performances for solving problems of practical interest (see e.g. Reference 2). 
However, some papers have shown that the grid point numbers do not always need to be as large as the 
theoretical assumptions require:-* because the flow characteristics are generally determined by the 
large-scale structures. Nevertheless, the problem related to any DNS should still be stated as: since any 
non-linearjow characteristic is innate in advective terms, one must use an adequate approximate 
(numerical) operatorfor them. To determine what the term ‘adequate’ stands for is the objective of the 
present paper. 

A new approach that has been studied since 1989 by the present author during the preparation of his 
graduation thesis6 is described here (see e.g. References 7 and 8). In the present approach the unsteady 
transport equations are solved without assuming any turbulence model (as in DNS). After a prefiltering 
operation the contribution due to the scales not representable on a given mesh is considered in an 
integral form by means of an appropriate approximate reconstruction of the local transport variables. 
This approach results in a weak formulation that can be seen as a large-eddy simulation (LES) type of 
procedure, because, by means of a local averaging procedure, the small scales are filtered (as in LES) 
but there is no use of any explicit subgrid scale (SGS) model for the closure of the equations (and no 
arbitrary isotropy assumption). A direct evaluation, conceived to replace the model, is discussed. For 
these reasons, this approach can be considered more flexible than LES and stronger than classical 
DNS. To obtain this goal, a multidimensional Taylor expansion of the local solution together with a 
multidimensional polynomial interpolation is used. Thanks to the filtering operation, it allows us to 
define a numerical flux of high-order accuracy in time and space. Several ‘model-free’ computations at 
high Reynolds number are analysed and discussed. 

2. THEORETICAL BACKGROUND 

Let us consider the balance equation for a quantity 4 in integral form over a fixed control volume 
(CV) R: 

where F(4) is the sum of the advective flux Fad = - VC#J (v is the velocity field) and the diffusive flux 
Fd. By integrating over [t,  t +  At], calling Vthe measure of R, one gets 

with the definition of average value given by 

1 
&(t) = 7 j  $(x ,  t)m = G(x, x’, A)$(x, t)m. 

n I n  
(3) 

This CV approach should be interpreted as a prefiltering operation (the filter G depends on the 
characteristic length A related to the measure of the CV) necessary in the sense that, by averaging the 
transport variables, they become ‘smoother’, making them representable on a given computational 
grid. In fact, if one solved the transport equation directly in terms of the local formulation arising from 
equation (l), one would fall within a classical DNS type of procedure with its well-known related 
problems. Instead, equation (2) can be computed with a high order of accuracy by means of a suitable 
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Taylor time expansion of kth order7** where each time derivative is replaced via the balance equation. 
In this way one obtains 

(A,$)V = [$(t + At) - $(t)]V = - ~ t  J n v,?$~)$J~L%~ + At J n ~,dL%2, (4) m m 
where the time integration operator is defined as* 

in which L, = -V * [v(.)] is the advective operator, Z is the identity operator and the power exponent 
in parentheses indicates a symbolic product of operators. 

The second stage of this approach is the reconstruction step. In order to have a better understanding 
of the present approach, Figure 1 illustrates the procedure. At a point x, a generic transport variable $J 
can be split into two terms, an average one and a residual one: 

&(x,) = 6 + &(X,) vt 2 to. 

By evaluating this relation at t and t + At, one obtains 

$J(x,, t + At) = &(x,, t )  + At$ + At& 

To express the residual part, a suitable Taylor space expansion (where nd is the space dimension) of 
mth order is adopted for the transport variable around a point x,. By integrating such an expansion over 
the CV, dividing it by its measure and equating it to equation (6), one gets 

E(x,) = Rim)+. 

The space reconstruction operator R?) is defined as? 

where the ‘fi symbolic power’ is obtained by taking the /th power and replacing each product of j 
partial derivatives by thejth derivative with respect to the variable that appears. Because of the time 
independence of the space reconstruction operator, one can express the time derivatives of the spatial 
fluctuation E as 

* It can be easily shown that 

so that by means of the time integration operator the advective flux results in being time averaged, i.e. one has a prefiltering 
operation with respect to the time too. 
t It is worth noting that the structure of E contains terms (such as gradients and curvatures) which allow us to recover the 
behaviour of the transpoIted quantity during any time step. Such terms, being related to odd and even derivatives, are necessary 
to improve diffusion and dispersion errors. 
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Figure I. Sketch of present CV approach. Step (a): the set of local values 4(xi, f) is known as well as, by means of polynomial 
interpolation, the average values. Step (b): at time t + At the average values are computed from equation (4) and the local values 

4(xi,  t + At) are reconstructed from the evaluation of equation (1 1)  

Now, by substituting the local balance equation in which one neglects the diffusive contribution (this is 
because of the high-Reynolds-number hypothesis, but it can easily be removed in general), inverting 
the order between divergence and space reconstruction operators and applying some mathematical 
theorems,* one gets 

Finally, by substituting equations (4) and (1 1) into equation (7), the latter can be rewritten as 
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where the 'reconstructed' high-order advective flux is defmed as 

F((ke'm) = -(v,@) + R:,")v,@")&. 

129 

(13) 

In conclusion, referring to equation (7), one can write 

new pointwise value =old pointwise value + time contribution of Local Average 
+time contribution of residual part of (6, 

so that one can summarize that the idea of this approach is to reconstruct the pointwise value by adding 
equation (1 1) to the local average contribution given by equation (4) (well computed by means of the 
filtering operation), where equation (11) should be interpreted as an additional 'integral balance 
equation for the subgrid scales'. In this h e w o r k  this approach can be interpreted as an intermediate 
one between LES (with a 'model-free subgrid closure') and DNS. 

3. NUMERICALSCHEME 

Let us define a partition of the domain R into a set of N subdomains Ri surrounding the points xi so 
that 

N 
(sz,}: Q = UQi, sz, n szj = {o} tli # j .  

i= 1 

Moreover, bi is the number of boundaries of Ri and nl is the normal to the Zth boundary in the outward 
direction. For each boundary BRiI we defme a local multidimensional polynomial interpolation based 
on pointwise values. This means that for each variable ( a )  one defines a polynomial of degree g(.) so 
that 

(6 (~ ,  t )  #(x, t )  = C: * B+, V(X, t )  a $(x, t )  = Cf B,, 6:) w #?), (14) 

where the 'hat' indicates the approximate discrete operator of the correspondmg differential one. The 
terms C(.) and B(.) are vectors of rgl, elements.* Thus we can approximate equation (13) on each 
boundary Bnil as 

Then, by means of analytical or numerical integration along the boundary, one gets 

likewise, for the diffusive terms, 

* The value of rg depends on the degree of the polynomial and on the space dimension nd. For example, if nd= 3, one gets 
rg= @+ I)@+ 2)(g + 3)/6. 
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Figure 2. (a) Control volume definition on 3D structured grid. (5) Definition of adopted upwind Criterion on 3D structured grid in 
case of v*n(O, v.tJ0 and v.f)O. Region for a complete second-degree polynomial 

A fundamental observation is that such a reconstruction leads us to define a continuous flux function 
across each boundary.* Finally, the time-marching single-step scheme arising from equation (12) can 
be written as 

This scheme clearly depends on the choice of polynomials. Each polynomial is defined by imposing 
the pointwise values on an appropriate set of nodal points chosen to respect the 'upwind criterion' 
illustrated in Figure 2 for a 3D structured grid (see Reference 7 for the stability analysis). 

4. RESULTS 
To apply this scheme, g+ = 2 has been adopted, whilst the polynomials for the other variables have 
been chosen depending on the prob1em.t For all the following computations, k= 3, k, = 1 and rn = 2 
were fixed. Several computations of test-cases are presented in the following subsections. 

4. I .  Scalar advection test-cases. Theoretical order of accuracy 

The test-cases consist of the numerical solution of the linear advective equation with an assigned 
velocity field. The linear problem, even in its simplicity, retains many fundamental problems of the 
numerical computation and is feasible for the estimation of the accuracy of a given scheme. This seems 
to be a reasonable fist step in order to approach flow problems at high Reynolds number. Moreover, it 
is useful to test the effects of the filtering operation for several types of CV in order to clarify the 
anisotropy effects introduced by the grid as well as the computational effort. For this goal, two test- 
cases were chosen from the literature. 

* Many schemes use a Riemann solver to compute the flux function owing to the fact that across a boundary the reconstructed 
flux function is not continuous. 
t It is worth remarking that schemes with quadratic interpolations (QUICKEST) were presented by Leonard9 and Leonard and 
Niknafs." 
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Figure 3. Test grids 

1. A smooth test function is advected by a velocity field corresponding to a clockwise rigid 

2. A periodic test function is advected by a uniform velocity field; the computation is repeated 

These test-cases were carried out on meshes of the type described in Figure 3 for various numbers of 
points along the x- direction: 10,20,30,40 and 50. The error estimation is in the &-norm for the iirst 
testcase and in the &-norm for the second. The resulting order of accuracy, obtained by means of a 
linear regression from the curve representing the error as a function of the mesh size on a double- 
logarithmic scale, is reported in Table I. These values show a better behaviour than both those of 
fourth-order EN0 schemes (the order of accuracy is estimated as about 3-1 by Casper and Atkins”), 
especially in the case of the hexagonal grid, and those indicated by Deconinck et al.” for several types 
of schemes (Lax-Wmdroff, SUPG, PSI, etc., where the obtained order of accuracy is always < 2). 
The order of accuracy of the present scheme seems to confirm that the reconstructed advective flux 
retains the kth order of accuracy with g= k - 1. 

rotation around the origin; the computation is repeated until the steady state. l 1  

until t = 2.12 

4.2. IncompressibleJiows 

The computations of incompressible flows are carried out on uniform structured grids and the 
elliptical equation (for both streamfunction and pressure) is solved using an optimized SOR procedure. 

4.2.1. Two- and three-dimensional lid-driven cavity. This is the one of the most popular testcases 
for the incompressible Navier-Stokes equations (see e.g. References 13 and 14), basically owing to the 
simple geometry. For 2D flows a streamfunction-vorticity formulation has been used. It is worth noting 
that since the preparation of his graduation thesis: the present author has found steady 2D solutions 
only for a Reynolds number Re < lo4. In fact, transition to a periodic solution occurs, as was shown by 
de Felice et al.’ In Figure 4 the streamline patterns at Re=7500 computed on a 50 x 50 grid are 
reported. This solution, obtained on a relatively coarse grid, is practically coincident (both qualitatively 
and quantitatively in terms of streamfunction values) with the solution obtained by Ghia et al.I3 on a 
much more refined grid (256 x 256). 

A three-dimensional computation was carried out at Re = 3200 on a 32 x 32 x 32 grid using a 
primitive variable formulation. By distributing a set of particles at a given time and following their 
dynamics in the flow field by solving the motion equations, the particle distribution reported in Figure 
5 was obtained. In contrast with the 2D case, for the 3D lid-driven cavity some oscillations of the flow 

Table I. Theoretical order of accuracy 

Structured grid Left diagonals grid Right diagonals grid Hexagonal grid 

Test-case 1 2-865 2 449 
Test-case 2 2.979 2-954 

2.525 
3.158 

2.309 
3.675 
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Figure 4. 2D lid-driven cavity at Re = 7500. Streamline pattern 

variables seem to occur for this Reynolds number. This has been a subject of investigation in several 
previous papers (see e.g. Reference 14) in order to clarify whether a 2D simulation is realistic at such a 
Reynolds number. 

For a given grid the computation time (herein the computations were performed on an IBM RISC 
6000-320) depends on the Reynolds number. For example, a 2D steady solution at Re = lo3 requires 
about 1 h at a Courant number of 0.5 on a 50 x 50 grid. The computation at Re = lo4 requires about 
4 h for a fully developed periodic solution. Of course, the 3D case is more expensive and requires 
about 20 h of computation. Basically, these computation times depend on the elliptical equation solver 
rather than on the high-order advective scheme, which, in comparison, requires a computational effort 
about seven times greater than the classical first-order upwind scheme, where the use of first- order 
upwind schemes requires a much more refined grid. 

4.2.2. Two-dimensional backward-facing step. The backward-facing step represents a good and 
widely studied test (see e.g. References 15 and 16) owing to the laminar, transitional and turbulent 
character of the flow at different Reynolds numbers. Experimental investigations found that the flow 
becomes 3D in the transitional regime (600 .c Re < 6000). For this reason, numerical simulations for 
laminar flow are at Re = 600 and for turbulent flow at Re = 6 x 1 04. A primitive variable formulation 
has been used. For Re = 600 (360 x 30 grid points) the steady solution provides a non-dimensional 
reattachment length of 12.5, while the secondary region has a detachment length of 10 and a 
reattachment length of 20.2 (see Figure 6(a)). These values agree with those of the experimental 
investigations by Armaly et al.I5 For Re= 6 x lo4 (480 x 60 grid points) the flow field is unsteady 
and the reattachment point moves up and down (see Figures 6(b)-6(d)) with an average value estimated 
(by means of time integration) as 8.2 (Figure 6(e)). This value can be successfully compared with that 
of both experimental simulations and LES, from which the value of 8 is estimated to be practically 
constant at high Reynolds number (i.e. Re > lo4). Streaklines (Figure 6 0 )  are obtained by injecting a 
set of particles at some station of the inflow section. The plot of the vorticity time evolution at the 
midpoint of the outflow section (Figure 7) shows the existence of a wide range of frequencies. This fact 
must be emphasized, because several computations performed by the present author using other lower- 
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Figure 5. 3D lid-driven cavity at Re = 3200. Several views of particle distribution 

order schemes proved that such an unsteady behaviour at high Reynolds number was not present. In 
fact, computations made with the first-order upwind scheme lead to an unphysical steady state (due to 
the large numerical diffusion) with a considerably smaller reattachment length. On the other hand, 
some computations made with the present scheme but without using the reconstruction operator, i.e. 
m = 0, have shown results (not reported here) that are qualitatively quite similar to the present ones but 
less accurate in terms of the reattachment length. This is probably due to the effects of the dispersion 
(phase) errors (the reconstruction operator with m = 2 takes into account third-order terms). Finally, it 
is observed that the computation time was about 40 h (including streakline computation) for a fully 
developed unsteady solution. 

133 
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(0 
Figure 6. Backward-facing step. (a) Streamlines at Re = 600. (b)-(d) Instantaneous streamline patterns. (e) Averaged streamline 

pattern and ( f )  streaklines at Re = 6 x lo4 

4.2.3. Two-dimensional evolving mixing layer. This test is mainly devoted to the study of mixing 
phenomena in a spatially evolving mixing layer. The study was performed both experimentally and 
numerically in order to investigate a model able to realize a quasi-periodical, unsteady flow field 
starting from well-defined laminar conditions. In fact, a simple Cartesian geometry was used for 
confinement of the flow. It consists of a main channel with a geometrical aspect ratio of 1 : 2 whose 
inflow section is subdivided into 32 smaller channels each having a spanwise dimension of 5 mm, 
where Poiseuille conditions were imposed. The central channel can guide the fluid at a different flow 
rate with respect to the external ones. Owing to the fluid dynamic instability mechanism (first 
appearing as the roll- up effect and afterwards as the pairing effect), these flows can share some 
properties with hlly turbulent 3D flows, e.g. the presence of recognizable structures, which of course 
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Figure 7. Backward-facing step at Re= 6 x lo4. Time evolution of vorticity at midpoint of outlet section 

in 3D flows occur on a broader spectrum of length and time scales. Numerical flow visualization of the 
mixing phenomena has been carried out and compared with the corresponding experimental patterns. l7 
A streamfunction-vorticity formulation has been adopted on a 192 x 96 grid. In Figure 8 the 
experimental and numerical patterns of the streaklines are shown for several flow rates. It appears that 
the unsteady numerical solutions (each one obtained in about 24 h) agree well with the experimental 
flow patterns. Studies are in progress to obtain several quantitative comparisons that are necessary to 
evaluate some characteristic quantities of mixing processes. 

4.2.4. Flow over af i tplane with a tmnsversal injection. Study on mechanisms of dmg reduction. 
This study was carried out by adopting a streamfunction-vorticity formulation on a 240 x 80 grid in 
order to investigate the effects caused by a slot injection on a flat plate in terms of drag reduction.'' 
The Reynolds number referred to the slot length (whose measure is only one mesh size) is 200. In fact, 
the induced separation region moves down along the plane (Figure 9(a)), thus reducing the stress on 
the wall. The time evolution of the total drag is shown in Figure 9(b), while in Figure 9(c) the time 
evolution of the average time integral of the total drag shows the diminishment of the drag when the 
flow becomes fully unsteady. Experimental investigations (still in progress) confirmed this mechanism 
of drag reduction. 

4.2.5. Axisymmetric rotating-heated cavify. The last test for incompressible flow is the motion in an 
axisymmebic rotating-heated cavity. Owing to the axisymmetry of the motion, a streamfunction- 
vorticity formulation of the meridian flow can be used (see e.g. Reference 19). At the top lid a heat flux 
is imposed together with a lid velocity. Numerical simulation has been carried out on a 100 x 50 grid. 
The Reynolds number was 3000 and the Rayleigh number was 7.2 x 10'. Figure 1O(a) shows the 
streamline pattern and Figure 1O(b) the temperature pattern. This test is a preliminary investigation 
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Figure 8.  2D evolving mixing layer. Experimental (left column) versus numerical (right column) simulation 

because it is currently analysing the configuration in which natural and forced convection effects are 
opposite in order to guide the flow to transitional conditions. 

4.3. Simulation of compressible complex Jlows 

The compressible two-dimensional Navier-Stokes equations have been solved using an unstructured 
grid generation technique developed and presented by de Felice et al.” The choice of an unstructured 
grid generation is justified by the wide capabilities of such a generation in handling complex 
geometries (see e.g. References 21 and 22) as well as its adaptive refinement potentialities. In fact, 
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Figure 9. 2D flow on a flat plate. Effects of transversal slot injection on drag. (a) Streakline pattern. @) Time evolution of total 
drag. (c) Time evolution of averaged time integral of total drag 
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Figure 10. hisymmetric rotating-heated cavity. (a) Streamline pattern and (b) temperature contour pattern at Re = 3000 and 
Ra = 7.2 x 10' 

relating the local grid size to the transport variables seems to be the best way to locally control the filter 
function in the present approach. For compressible flows, both DNS (see e.g. Reference 23) and LES 
(see e.g. Reference 24) approaches can be found in the current literature. 

Herein the chosen test is the computation of the flow around a turbine cascade geometry for which 
the experimental results are available. The system of equations is written in conservative form. A 
numerical reflecting type of outfiow condition was chosen from those proposed in the l i t e r a t ~ r e . ~ ~ * ~ ~ - ~ *  
In fact, the static pressure at the computational outlet and the stagnation values at the inlet were fixed. 
With the assigned conditions the estimated Reynolds number referred to the chord length is 2.5 x lo6. 
This flow is particularly critical because the vortex shedding at the trailing edge generates separated 
flow regions that often cause the failure of most turbulence models. The aim of this simulation is to 
demonstrate that it is possible to compute the most important part of the flow structures by only 
resorting to a refinement (i.e. a control of the filter function) of the grid over the shear regions in order 
to allow an accurate filtering and reconstruction operation of the transport variables. In Figure 1 I(a) the 
generated grid (3200 grid points) is shown and in Figure ll(b) the computed isentropic Mach 
distribution (averaged over an adequate time interval) on the turbine blade is compared with the 
experimental measurements of Cicatelli et aLZ9 This comparison shows excellent agreement (about 2 
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Figure 1 l(a). 2D compressible flow around a turbine blade. Computational unstructured grid with details of leading and trailing 
edges 

per cent maximum difference) with the experimental measurement. Finally, a streakline pattern is 
presented in Figure 1 l(c) where the vortex shedding at the trailing edge and the transport of the large 
structures clearly appear. 

5. DISCUSSION AND CONCLUSIONS 

The mathematical background of local average direct numerical simulation (LA-DNS) has been 
presented. It results in a weak formulation where a transport variable is suitably filtered by means of 
integration over a control volume.* However, the average operation over a control volume has already 
been described in some past papers in the form of the so-called ‘volume balance What is 
important to r e d  is the fact that in that early approach the average momentum equations explicitly 
present the subgrid scale (SGS) Reynolds stresses, i.e. E4Eq = - KF, that take the effects of the 
small scales into account. Actually, it is well known that the source of these stresses is the non-linear 
advective term and any physical consideration adopted to model them should arise from such nature. 
Indeed, this has been the guideline of the present work, where the Reynolds stresses are not explicitly 

* The main propetties we requite for the filter function are not discussed because this would be outside the aims of the present 
paper. 
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Figure 1 I@). 2D compressible flow around a turbine blade. Computed Venus experimental isentropic Mach number distribution 

extracted from the term Zipj and therefore are not modelled. In conclusion, highly advective flows can 
be simulated with a direct and adequate treatment of the advective fluxes provided that (i) the filtering 
is such as to guarantee an accurate discrete representation of the large scale on a given grid and (ii) the 
reconstruction is such as to make the approximation of the numerical pointwise values (i.e. the set 4i to 
be considered representative of the transport variable only in some average sense even after the 
reconstruction) as accurate as possible with respect to the physical local value, i.e. to get _E + 0 for 
vanishing grid sizes (one remarks that the present filtering operation is such that 5 = 6 - 4) at high 
convergence rate as results from the linear accuracy test-cases. At present the role of the reconstruction 
step with respect to an SGS closure model has still not been entirely clarified, but it appears quite 
evident from equation (13) that for suitable values of m and k, it results in the formation of an 
additional eddy viscosity term related to the flow variables and to the computational grid sizes. Finally, 
the fact that the use of upwinded fluxes should result in very little energy being aliased back owing to 
the dissipative nature of upwind schemes is noteworthy. On the other hand, whether it can be 
considered correct to let the scheme assume non-controlled dissipative effects rather than to control 
them by using explicit models is still controversial. 
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Figure 1 l(c). 2D compressible flow around a turbine blade. Streakline pattern 

The influence of some parameters (the polynomial degree as well as the values of k, m and k,) is 
being studied in order to clarify how the accuracy in replacing a differential operator by a discrete one 
can influence the approach. Future studies will involve a wide use of unstructured grids for efficient 
control of the distribution of the filter function over the computational domain as well as a 3D 
implementation which seems necessary to correctly simulate the flows without 2D assumptions. 
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